

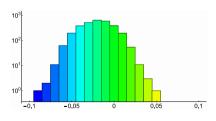
advanced network science initiative (ansi)

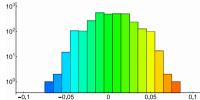
Beyond pairwise Ising models in D-Wave: searching for hidden multi-body interactions

Yaroslav Kharkov^{1,2}, Andrey Lokhov^{1,3} (PI), Marc Vuffray³

with Misha Chertkov^{1,3}, Carleton Coffrin⁴, Sidhant Misra⁵

¹ CNLS ² UNSW Sydney ³ T-4 ⁴ A-1 ⁵ T-5

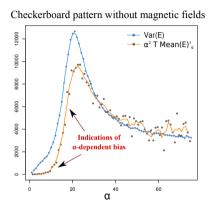

LA-UR-17-23748


Introduction and context: de-biasing the machine

Project on the D-Wave calibration: emerged from the previous ISTI call in 2016

Observation: input couplings $\vec{J} = \{J_{ij}, h_i\}$ are different from the ones realized in D-Wave, due to an "effective temperature" and biases

$$D(\vec{J}) = \vec{J}' = \beta_J(\vec{J} + \delta \vec{J})$$

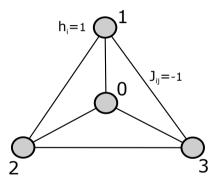

Goal: create a calibration procedure/software that takes the target couplings \vec{J}'_{target} and outputs the input couplings to D-Wave \vec{J}'_{input} [parallel effort on a different funding].

Introduction and context: what is the right model?

Is statistics of qubits well described by a classical Ising model? [Important for sampling]

Signature of **biases**: if
$$P(\underline{\sigma}) \propto e^{-\mathcal{H}(\underline{\sigma})/(\alpha T)}$$
, then $\alpha^2 T \frac{\partial}{\partial \alpha} \langle \mathcal{H} \rangle = \langle \mathcal{H}^2 \rangle - \langle \mathcal{H} \rangle^2$

Might need to correct for biases in higher-order interaction terms

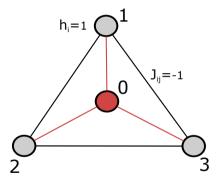


Goals of this project: familiarization with D-Wave, and detecting potential presence of multi-body interactions

Multi-body interactions can exist even when the original model is Ising

Ising model on 4 qubits

$$\mathcal{H} = \sum_{i < j} J_{ij} \sigma_i \sigma_j + \sum_i h_i \sigma_i$$

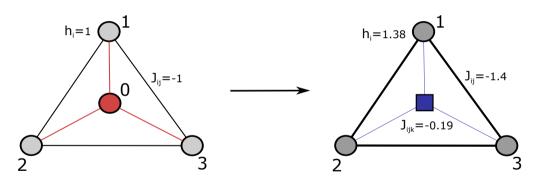


$$J_{01}\sigma_{0}\sigma_{1} + J_{02}\sigma_{0}\sigma_{2} + J_{03}\sigma_{0}\sigma_{3} + J_{12}\sigma_{1}\sigma_{2} + J_{13}\sigma_{1}\sigma_{3} + J_{23}\sigma_{2}\sigma_{3} + h_{0}\sigma_{0} + h_{1}\sigma_{1} + h_{2}\sigma_{2} + h_{3}\sigma_{3}$$

Multi-body interactions can exist even when the original model is Ising

Ising model with a hidden spin

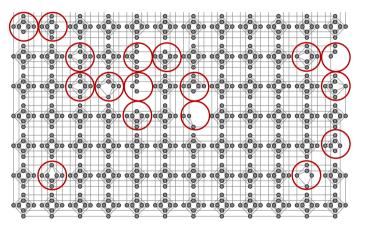
$$\mathcal{H} = \sum_{i < j} J_{ij} \sigma_i \sigma_j + \sum_i h_i \sigma_i$$



$$\sigma_0(J_{01}\sigma_1 + J_{02}\sigma_2 + J_{03}\sigma_3 + h_0) + J_{12}\sigma_1\sigma_2 + J_{13}\sigma_1\sigma_3 + J_{23}\sigma_2\sigma_3 + h_1\sigma_1 + h_2\sigma_2 + h_3\sigma_3$$

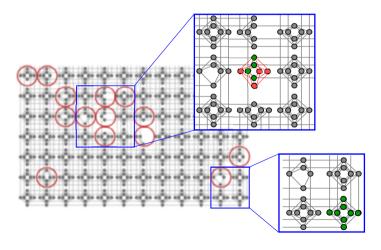
Multi-body interactions can exist even when the original model is Ising

How does the model on 3 observed qubits look like?


Reconstructed model

$$J_{123}\sigma_{1}\sigma_{2}\sigma_{3} + J_{12}\sigma_{1}\sigma_{2} + J_{13}\sigma_{1}\sigma_{3} + J_{23}\sigma_{2}\sigma_{3} + h_{1}\sigma_{1} + h_{2}\sigma_{2} + h_{3}\sigma_{3}$$

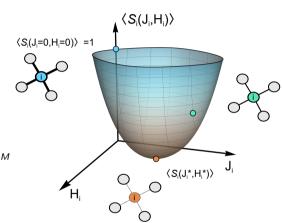
Why do we care?


Let us take a close look at the D-Wave chip:

Even if the underlying model is of the pairwise Ising type, multi-body interactions can still be present due to broken qubits

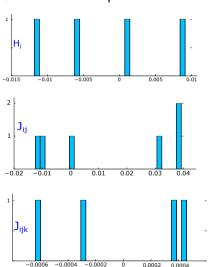
Detection of multi-body interactions: experimental setup

Study of two cell types: with and without broken qubits

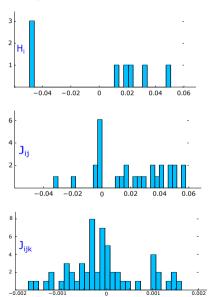

And how do we do that? Interaction Screening method

For each spin, minimize the potential $S_i(J_i, H_i)$ which applies counter-interactions $(P \propto e^{-\mathcal{H}})$:

$$(\widehat{J}_i, \widehat{H}_i) = \underset{(J_i, H_i)}{\operatorname{argmin}} S_i(J_i, H_i)$$


$$S_i(J_i, H_i) = \langle \exp(\sum_{j, k \neq i} J_{ijk} \sigma_i \sigma_j \sigma_k + \sum_{j \neq i} J_{ij} \sigma_i \sigma_j + H_i \sigma_i) \rangle_M$$

Vuffray, Misra, Lokhov, Chertkov, NIPS (2016) Lokhov, Vuffray, Misra, Chertkov, arXiv:1612.05024 (2016)

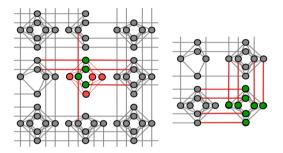


Results: zero input Hamiltonian

Cell with broken qubits:

Cell w/o broken qubits:

Some facts and remaining questions


- √ 4-body interactions and beyond are indistinguishable from zero
- ✓ The amplitude of detected 3-body terms J_{ijk} is at least order of magnitude smaller than residuals J_{ij} , H_i , and does not seem to change for different input Hamiltonians
- ✓ Conclusion: higher-order correction terms can be ignored good news

Question: Why the values of J_{ijk} detected in cells with and without broken spins are of the same order? After all, are these 3-body interaction induced or intrinsic?

"Screening" cells from external influence: experimental design

Induced or **intrinsic** nature of the detected 3-body interactions?

Possibility: neighboring nodes still carry out residual couplings, and need to be "screened" using the pairwise calibration procedure

Future work: this question of academic interest is left for future work.